A RESEARCH PERSPECTIVE ON SAFE AND CERTIFIABLE AUTONOMY

Johann Dauer, Institute of Flight Systems

ICAO RPAS Symposium, Montreal, November 7-9, 2022

Flight Systems Research on RPAS / UAS

DLR at a glance

- Research institution
- Space administration
- Project management agency

Major research branches

- Aeronautics
- Space
- Energy

- Traffic
- Security
- Digitalisation

Guidance, navigation, control GNSS denied environments

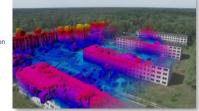
Environmental perception

Safe operation

Safe autonomy

Artificial intelligence

- Risk assessment
- Flight testing
- Methods for certification



RPAS / UAS research at the Institute of Flight Systems

2

Autonomy Emergence from Automation and Environment

Aircraft functions & components

Mission management & automation Semantic environmental perception Detect & avoid Contingency & emergency management System health management Trajectory & motion planning Trajectory optimization Robust & fault-tolerant flight control State and weather sensing

External Systems and Services

Airspace services (UTM / U-space) Position systems Datalink infrastructure

Cooperation with other (autonomous) Systems

Transport infrastructure Manned aviation Ground / water vehicles

Human Involvement

Monitoring / responsibility Procedures Human factors Crew qualification

Risk-based Scaling the Assurance & Certification

Scaling the level of rigor and effort for certification: Technical reliability (design and airworthiness, manufacturer, datalinks, maintenance, recovery)

 \rightarrow Concept of Operations or Flight Manual as initial basis

air risk (type of airspace / traffic density) ground risk (kinetic energy / population density)

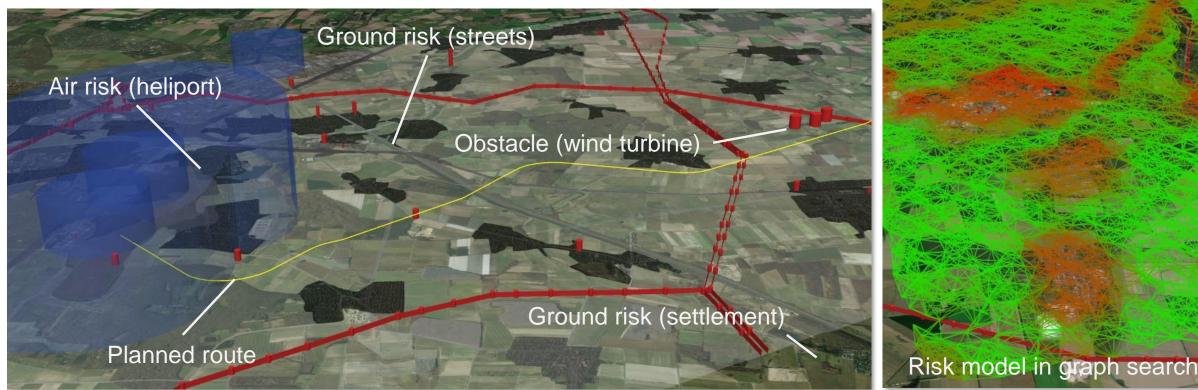
minor airworthiness requirements

Johann Dauer, Institute of Flight Systems, Nov. 8 2022

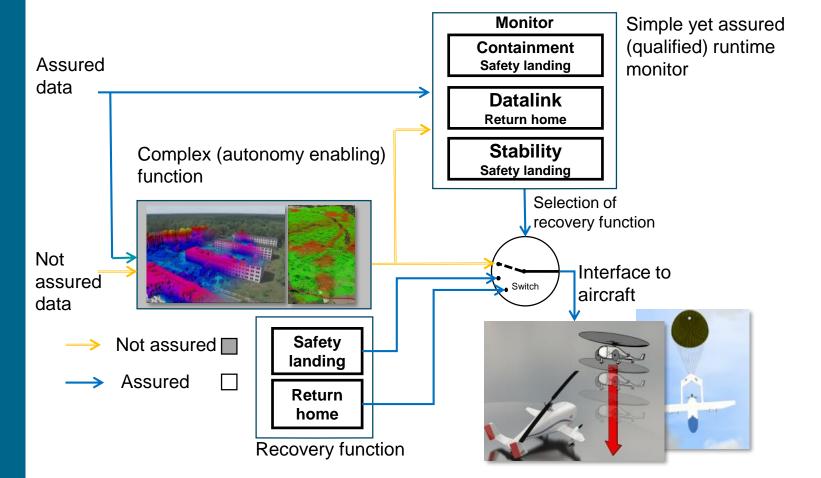
operational risk based certification

e.g. EASA's Specific Category: Specific Operations Risk Assessment(SORA)

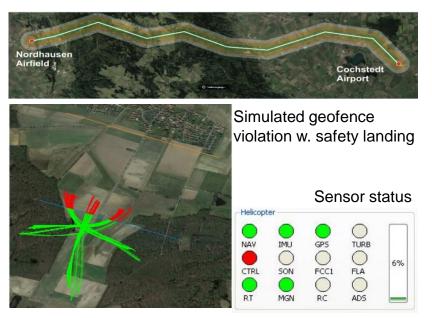
full certification


New certification basis e.g. CS VTOL

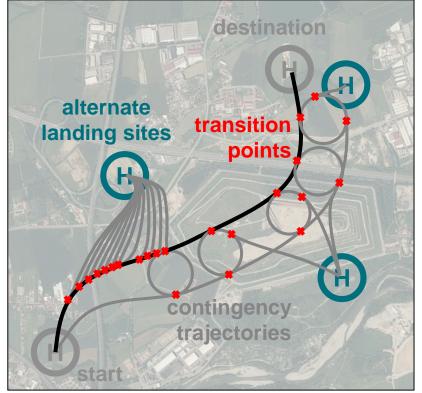
Mapping Autonomy Functions to Operational Risks Example: Risk-based Planning


- Layers of map information (traffic, land use, airspace ...
- Risk modelling for the operational volume
- Planning of routes with minimal operational risk
 ←→ SORA

Details: **Schopferer S, Donkels A** (2022) Trajectory risk modelling and planning for unmanned cargo aircraft. In: Automated Low Altitude Air Delivery. Springer, New York


Reducing the Certification Effort for Complex Function Safe Operation Monitoring (Example Application of ASTM F3269)

Operational example:


- Flight in low risk flight corridor
- Safety landing / flight termination as contingency
- Supervision of operation to increase safety

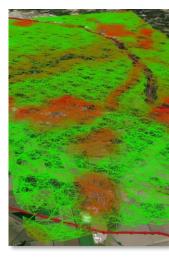
6

Automatic Contingency Management (ACM) Handling the Unexpected

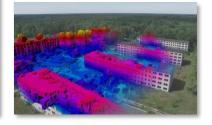
- Ideally ACM handles all unexpected events
- Challenges:
 - Comprehensive and reliable detection of critical situations
 - Comprehensive database of implemented (assured) recovery functions
- Complexity scales with operational risks
- Incremental build up of evidence. Starting with
 - With little operational risks
 - Sufficiently large defined margins
 - Small number of contingencies
- Automaton is thus one limiting factor of autonomy

(

Looking Forward to Your Thoughts and Questions! Get in Touch



Johann Dauer Mail: johann.dauer@dlr.de Phone: +49 531 295 3262


Department of Unmanned Aircraft Institute of Flight Systems Lilienthalplatz 7, 38108 Braunschweig, Germany

8